Abstract. The advection diffusion equation is one of the most popular and convenient equations in calculating the transport of energy and materials in flux areas. In this paper, one-dimensional advection-diffusion equation is solved using the finite difference, fourth order finite difference, finite volume, and differential quadrature methods in explicit condition. The quantitative comparative analysis involved two hypothetical cases and one experimental study. The results of the numerical solutions for the hypothetical cases are compared against the analytical solution. The experimental data are also simulated by the methods. The comparative analysis results revealed that the differential quadrature method performs as good as the analytical solution for the hypothetical cases. All the methods but the finite difference showed comparable performance in simulating the experimental data. Keywords: Advection-diffusion equation, Numerical methods, Explicit solution Ozet. Tasinim-yayilim denklemi, akim alanlarinda enerji ve malzemelerin tasiniminin hesaplanmasinda kullanilan en populer ve kullanisli denklemlerden biridir. Bu makalede, bir boyutlu tasinim-yayilim denkleminin, sonlu fark, dorduncu mertebeden sonlu farklar, sonlu hacim ve diferansiyel kuadratur yontemleri kullanilarak acik cozumleri yapilmistir. Kantitatif karsilastirmali inceleme, iki varsayimsal vaka ile bir deneysel calisma icermektedir. Varsayimsal vakalar icin sayisal cozumlerin sonuclari analitik cozum ile karsilastirilmistir. Deneysel veriler de yontemlerle simule edilmistir. Karsilastirmali inceleme sonuclari, diferansiyel kuadratur yonteminin varsayimsal durumlarda analitik cozum kadar iyi performans gosterdigini ortaya koymustur. Cozumde kullanilan tum yontemler deneysel verilerin simulasyonu icin karsilastirmaya deger performans gostermistir. Anahtar Sozcukler: Tasinim-yayilim denklemi, Sayisal yontemler, Acik cozum