Objective: This research aimed to develop a new, cost-effective, solvent/surfactant/supercritical carbon dioxide-free, sublimation-based method to prepare curcumin nanoparticles. The research objective was to meet Sustainable Development Goals (SDG-3,9 and 15). The problem of poor absorption of curcumin is sorted out by micro or nanonization, solid dispersion, solid solution, β-cyclodextrin complexation, micelle formation, and solution-enhanced dispersion by supercritical carbon dioxide. Methods: The curcumin, mixed with menthol, was allowed to melt at 29 °C and placed under vacuum for 6 H (h). The menthol sublimates and leaves the curcumin particles as residue. The residual curcumin particles were characterised, and stability studies were also performed. Results: The curcumin nanoparticles were stable, in the nano-size range (10-300 nm); Fourier Transform Infrared Spectroscopy (FTIR) showed the presence of CH3 and CH2 bending, aromatic C=C and C=O stretching, aromatic CC and OH stretching, aliphatic C-H bending, aromatic-OH bending with both pure curcumin and curcumin nanoparticles, that no change in bonds and groups, and differential scanning calorimetry (DSC) showed the temperature (T) =162.03, 185.64 and peak maximum is 177.986 for pure curcumin while T=164.43, 185.68 and peak maximum is 177.784 for curcumin nanoparticles that indicated compatibility between curcumin and menthol. The curcumin nanoparticles showed improved solubility, dissolution, and antioxidant activity by calculating Inhibitory Concentration50 (IC50) value 114.51 and in vitro cytotoxicity (IC50=165.6±0.084 µg/ml) of curcumin nanoparticles against MCF-7, a human breast cancer cell line with estrogen, progesterone, and glucocorticoid receptors. Conclusion: It concluded that the sublimation technique can used to prepare the nanoparticles of drugs or might be for thermo-labile drugs.
Read full abstract