Loop diuretics are commonly used diuretics in the treatment of fluid retention but induce hypovolemia-related renal dysfunction. Na+-glucose cotransporter 2 (SGLT2) inhibitors induce osmotic diuresis, but body fluid volume is maintained by stimulating vasopressin-induced fluid intake and collecting duct water reabsorption as previously reported in diabetic rats. We aimed to test the hypothesis that unlike SGLT2 inhibitors, loop diuretics lack activation of similar fluid homeostatic mechanisms. Nondiabetic male Sprague-Dawley rats were treated daily by oral gavage with vehicle, the SGLT2 inhibitor ipragliflozin (5 mg/kg), or the loop diuretic furosemide (50 mg/kg) and monitored in metabolic cages for 2 or 7 days. Ipragliflozin and furosemide similarly increased urine volume on day 2. This was associated with increased serum Na+ concentration, urine vasopressin excretion, fluid intake, and solute-free water reabsorption in response to ipragliflozin but not to furosemide. Ipragliflozin maintained fluid balance (fluid intake - urine volume) on day 2 and total body water measured by bioimpedance spectroscopy and serum creatinine on day 7. In comparison, furosemide decreased fluid balance on day 2 and decreased total body water and increased serum creatinine on day 7. Furosemide, but not ipragliflozin, increased plasma renin activity, and systolic blood pressure was similar among the groups. In conclusion, the osmotic diuresis of the SGLT2 inhibitor increased serum Na+ concentration and the vasopressin-related stimulation of fluid intake and renal water retention maintained fluid balance, whereas the loop diuretic did not engage the compensatory vasopressin system. The data suggest differences in vasopressin and fluid homeostatic responses between SGLT2 inhibitors and loop diuretics.NEW & NOTEWORTHY In nondiabetic rats, the Na+-glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin increased vasopressin-related stimulation of fluid intake and free water reabsorption and maintained fluid balance and serum creatinine, whereas the loop diuretic furosemide reduced vasopressin and induced a negative fluid balance followed by a subsequent increase in serum creatinine. This study suggests that differences in vasopressin secretion in response to a SGLT2 inhibitor or loop diuretic may contribute to differences in body fluid status and subsequent renal function.
Read full abstract