Larch is a cold-temperate tree species native to the northern hemisphere and tolerant to low temperatures. It is one of the most significant timber species in Northeast China. This study examined growth changes in hybrid larch seedlings from five lines to explore the physiological responses of these seedlings to low-temperature stress. Using 8-month-old hybrids of larch seedlings, we subjected the plants to cold stress at 4 °C and freezing stress at −20 °C over three periods of 6, 12, and 24 h, and treatment at 25 °C was used as a control. Results showed that significant correlations were found among the growth indicators, with larch line 1306 having the lowest incremental growth indicators, the largest root-to-crown ratio, and better cold tolerance than the other larch lines. The levels of soluble sugars (SSs), soluble proteins (SPs), malondialdehyde (MDA), and relative electrolyte leakage (REC) increased significantly in all lines under low-temperature stress. The activities of superoxide dismutase (SOD) and catalase (CAT) showed variation over time. Significant correlations were found between MDA and REL, SS, SR, Pro, CAT, and SOD in most of the lines; no significant correlation was found between MDA and the other indices in lines 1301 and 1309; and significant correlations were found between most of the physiological indices in line 1306.
Read full abstract