Alzheimer's disease is characterized by the loss of neurons, the accumulation of intracellular neurofibrillary tangles and extracellular amyloid plaques in the brain. However, there are contradicting data on differences in neurogenesis at the onset of the disease or before the formation of amyloid plaques. As awareness of the importance of the pre-symptom phase in neurodegenerative diseases grows in the context of early diagnosis and pathogenesis, we analyzed the critical periods of adult hippocampal neurogenesis at an early stage under the action of soluble Ab1-42 beta-amyloid. The proliferation, migration and neuronal cells survival were evaluated in mice with an injection of soluble amyloid beta-oligomers. It was found that the injection of Ab1-42 oligomers causes a decrease in cell proliferation in the mouse hippocampus. Despite the preservation of the neuroblast pool in animals after beta-amyloid injection, the process of radial migration is disrupted, and an increase in apoptosis in the neurogenic niche was revealed. Thus, our results demonstrate damage of neurogenesis critical stages: the progenitor cells, neuroblast migration, the integration of immature neurons, and the survival of neurons under application of soluble beta-amyloid oligomers. The obtained data indicate decline in proliferation rate in the subgranular zone, that is accompanied by ectopic differentiation and disturbed migration, producing, apparently, abnormal neurons that have lower survival rates. That could lead to a decrease in mature neurons numbers and the number of cells in the granular layer of the dentate gyrus.
Read full abstract