The solubilization laws of pollutants in micelles and their separation efficiency are very important in the successfully efficient application of micellar enhanced ultrafiltration (MEUF). The solubilization behavior of o-toluidine (OT) and tricyclazole (TC) into sodium dodecyl sulfate (SDS) micelles in MEUF was studied using nonlinear equation sets for concentration analysis, which resolved the issue on the overlap of absorption spectra of multicomponent compounds restricting the application of conventional ultraviolet (UV) spectroscopic method. The solubilization isotherms for both pollutants could be best explained by the Langmuir-Freudlich model (R2>0.99) followed by the modes of Langmuir and Freudlich, inferring the complexity of solubilization mechanism and solubilization advantage of monolayer over multilayer. The calculated thermodynamic parameters (ΔG0, ΔH0 and ΔS0) indicated that this process was endothermic and spontaneous. The solubilization of OT and TC well followed the pseudo second-order and pseudo first-order kinetics, respectively. The separation and recovery of SDS solubilizing these two pollutants were also investigated through lowering solution temperature to 2 °C followed by centrifugation. The best recovery rate of about 66% for SDS was achieved containing 10 and 5% of each initial amount of OT and TC, respectively, at near-neutral solution pH value. The recovery of SDS could decrease to some extent under alkaline and acidic conditions.