Recently, polar side chains have emerged as a functional tool to enhance conjugated polymer doping properties by improving the polymer miscibility with polar chemical dopants and facilitate solvated ion uptake. In this work, we design and investigate a novel family of side chains containing a single ether function, enabling the modulation of the oxygen atom position along the side chain. A meticulous investigation of this new polymer series by differential scanning calorimetry, fast scanning chip calorimetry and X-ray scattering shows that polymers bearing single-ether side chains can show high degree of crystallinity under proper conditions. Importantly, due to a gauche effect allowing the side chain to bend at the oxygen atom, the degree of crystallinity of polymers can be controlled by the position of the oxygen atom along the side chain. The further the oxygen atom is from the conjugated backbone, the more crystalline the polymer becomes. In addition, for all new polymers, high thermomechanical properties are demonstrated, leading to remarkable electrical conductivities and thermoelectric power factors in rub-aligned and sequentially doped thin films. This work confirms the potential of single-ether side chains to be used as polar solubilizing side chains for the design of a next generation of p- and n-type semiconducting polymers with increased affinity to polar dopants while maintaining high molecular order.