Ultra pure metals have various applications, e. g. as electrical conductors. Crystallization from the melt, e. g. via zone melting, using the segregation of impurities at the solidification front is the basic mechanism behind different technical processes for the refining of metals and semi-metals. In this paper, we focus on a crystallization methodology with a gas cooled tube (“cooled finger”) dipped into a metallic melt in a rotating crucible. The necessary requirement for purification in a solidification process is a morphologically stable solidification front. This is the only way to enable macroscopic separation of the impurities, e. g. by convection. For cellular or dendritic solidification morphologies, the segregated impurities are trapped into the interdendritic melt and remain as microsegregations in the solidified metal. Morphological stability depends on the temperature gradient G at the solidification front, the solidification front velocity V front and thermodynamic alloy properties like the segregation coefficients of the impurity elements. To quantify the impact of these parameters on the morphological evolution, especially on the planar/cellular transition and thus on microsegregation profiles, phase field simulations coupled to a thermodynamic database are performed for an aluminium melt with three impurities, Si, Mn and Fe. In particular, we have investigated the morphology evolution from the start of solidification at the cooled finger towards a stationary growth regime, because in the technical process a significant fraction of the melt solidifies along the initial transient. To solve the transient long range temperature evolution on an experimental length scale, the temperature field has been calculated using the homoenthalpic approach together with a 1D temperature field approximation. The simulations provide the process window for an energy efficient purification process, i. e. low thermal gradients, and elucidate the benefit of melt convection.
Read full abstract