Postfire management actions are used to mitigate damage caused by wildfires. Salvage logging, often employed to restore ecosystem functions in burnt stands, plays an essential role in reducing economic losses and the burn severity of future wildfires. However, its ecological implications for soil functionality still need to be understood, especially in the Mediterranean basin, which is prone to erosion and desertification. This study aimed to investigate the effects of fire on (i) soil organic matter (SOM) quality and composition using differential scanning calorimetry-thermogravimetry (DSC-TG) and solid-state nuclear magnetic resonance (13C CPMAS NMR) and (ii) phosphorus (P) forms using solid-state 31P NMR spectroscopy in a wildfire that affected 3200 ha in southeastern Spain in July 2017. One year after the fire, we monitored four Pinus halepensis Mill. stand categories based on soil burn severity (SBS): unburnt, low SBS, high SBS and high SBS areas with salvage logging (n=36, nine plots per SBS level). We collected soil samples and analysed soil pH, SOM content and SOM quality, along with biological activity indicators (carbon biomass, basal respiration, β-glucosidase, phosphatase activities) and P forms. We ran ANOVA statistical tests to identify significant differences in soil properties among SBS levels. We also established general linear regressions of thermo-recalcitrance values and aromaticity with biological soil quality indices to compare both techniques for detecting changes in SOM quality and composition. The results indicated that fire increased soil pH (up to 0.3), particularly in the plots with higher SBS levels. SOM decreased significantly with increasing SBS level (down to < 5 % at the high SBS level), with a shift from labile compounds (carbohydrates) to more recalcitrant ones (aromatics). Organic P forms were depleted, while orthophosphate levels rose, increasing the risk of irreversible fixation. This study also highlights that DSC-TG is a cost-effective technique for assessing SOM quality changes. Understanding these effects is essential for developing policies to conserve and restore fire-affected areas and to promote practices that enhance soil functionality and resilience.
Read full abstract