Young's modulus and hardness of the constituent phases of β-Ti (bcc or B2), in equilibrium with α2-Ti3Al (D019) and γ-TiAl (L10) phases in Ti-Al-Cr ternary alloys were quantitatively evaluated in terms of the chemical composition analysis and nano-indentation method, in order to identify the Cr concentration dependence on the mechanical properties of the β phase. An alloy with a nominal composition of Ti-43Al-3Cr (at.%) decomposes into the three phases of β, α2, and γ by equilibrium heat treatment at 1373 K, with chemical composition of Ti-37.2Al-5.2Cr, Ti-38.9Al-2.2Cr, and Ti-47.4Al-1.4Cr, respectively. The β phase shows a Young's modulus of 141 ± 5 GPa, smaller and less orientation dependent than the other two phases of α2 (174 ± 9 GPa) and γ phases (164 ± 15 GPa). In contrast, the β phase has a hardness of 5.9 ± 0.3 GPa, slightly softer than the α2 phase (6.4 ± 0.8 GPa) but much harder than the γ phase (3.7 ± 0.6 GPa). The alloys Ti-44Al-4Cr and Ti-45Al-6Cr consist of two phases of β and γ phases, and the chemical composition of the β phase in these two alloys is Ti-36.5 Al-8.5 Cr and Ti-36.3 Al-13.9 Cr, respectively, with nearly the same Al concentration. The Young's modulus and hardness of the β phase with the latter composition become 158 GPa and 6.7 GPa, respectively, with increasing Cr content. These results found that the effect of solid solution Cr on the Young's modulus for β phase is relatively weak, and that on the hardness is strong, in comparison with that for the other two phases.