Winter manure application contributes substantial nutrient loss during snowmelt and influences water quality. The goal of this study is to develop best management practices (BMPs) for winter manure management. We compared nutrient concentrations in snowmelt runoff from three dates of feedlot solid beef manure application (November, January, and March) at 18 tons ha−1 on untilled and fall-tilled plots. The manure was applied at a single rate. Sixteen 4 m2 steel frames were installed in the fall to define individual plots. Treatments were randomly assigned so that each tillage area had two control plots, two that received manure during November, two in January, and two in March. Snowmelt runoff from each individual plot was collected in March and analyzed for runoff volume (RO), ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total dissolved phosphorus (TDP). Snowmelt runoff concentrations and loads of NH4-N, TKN, TP, and TDP were significantly higher in runoff from manure application treatments compared to control. The concentration of NH4-N and loads of NH4-N and TDP were significantly (p = 0.05) greater (42%, 51%, and 47%, respectively) from untilled compared to fall-tilled plots. The November application significantly increased RO, NH4-N, and TDP concentrations and loads in the snowmelt runoff compared to January and March applications. Results showed that nutrient losses in snowmelt runoff were reduced from manure applications on snow compared to non-snow applications. The fall tillage before winter manure application decreased nutrient losses compared to untilled fields.
Read full abstract