In this study, we mainly used in-situ observations from underwater gliders to analyze the ocean response in the northern South China Sea affected by Son-tinh (2018), Mandal et al. (2018) Mangkhut (2018)and Noul (2020). The results showed that these TCs caused 0.6 °C, 1.1 °C and 1.7 °C maximum sea surface temperature cooling respectively, which were weaker than general conditions because of long distance, weak intensity and fast movement speed. Net solar radiation, precipitation, 10-m wind and sea surface heat flux also made contribution in changes of SST. The mixed layer depth (MLD) became shallower after Son-Tinh and Noul passed through, while during Mangkhut it did not change significantly. After TCs passed through, the stratification around MLD became more obvious, with a banded distribution and stronger high-value areas of buoyancy frequency. Within 1 week after the shortest distance, the temperature and salinity responses in the upper ocean were stronger than those at the sea surface, and the gradients of temperature and salinity and their anomalies were more evident in the subsurface layer. The results of this study show that underwater glider observations are important for understanding oceanic responses to tropical cyclones and are useful for studying tropical cyclone activities.
Read full abstract