The adoption of carbon capture systems presents a pivotal strategy for mitigating greenhouse gas emissions, notably carbon dioxide. Nevertheless, the substantial surge in energy consumption associated with such systems remains a significant challenge. Addressing this challenge necessitates the integration of renewable energy sources. This study is dedicated to optimizing the conventional post-combustion carbon capture configuration, focusing on energy, exergy, and exergoeconomic considerations. The optimized configuration showcases a noteworthy 10 % reduction in overall energy penalties compared to its conventional counterpart, primarily attributed to diminished energy utilization in the reboiler. To achieve absolute sustainability and eliminate energy penalties in the optimized configuration, integration of a parabolic trough collector for steam provision to the reboiler and photovoltaic solar collectors for powering the plant’s equipment was undertaken. Furthermore, the incorporation of solar thermal storage tanks and batteries enables the storage of excess heat and electricity, ensuring operational continuity for up to 13 h in the absence of sunlight, such as during nighttime. The final optimized configuration manifests a commendable 14 % enhancement in exergoeconomic performance relative to the conventional configuration, thereby realizing zero energy penalties. This achievement renders the optimized configuration a compelling and viable choice for carbon capture units.