In this paper, we focus on the general free scalar–tensor gravity with three free coupling functions, which in the near-field region looks like general relativity (GR) plus a fifth force of Yukawa-type induced by the scalar field. We show that the fifth force is always attractive in the theory. We investigate the effects of the attractive fifth force and calculate in detail the fifth force-induced orbital precession rate δω/ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\delta \\omega /\\omega $$\\end{document} and the parameterized post-Newtonian parameters γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma $$\\end{document} and β\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta $$\\end{document}, all of which depend on the fifth force parameters and the interaction distance. It turns out that, due to the attractive fifth force, δω/ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\delta \\omega /\\omega $$\\end{document} is always greater than zero, γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma $$\\end{document} is always less than one, β\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta $$\\end{document} is greater than one at large distances, and additionally this class of theories is ruled out as an alternative theory to dark matter. We place stringent constraints on the fifth force parameters by combining the lunar laser ranging (LLR), Cassini, and Mercury precession experiments, and derive the upper bounds on the strength ratio of the fifth force to gravitational force at different scales from the LLR observation. We find that the Mercury constraint is not competitive with the LLR and Cassini constraints and the LLR observation imposes much more stringent bounds on the strength ratio on large scales than on small scales. Our results show that this theory is sufficiently close to GR for a small enough fifth force strength and can reduce to GR with a minimally coupled scalar field in the absence of fifth force.
Read full abstract