Identifying the source-specific health risks of potentially toxic elements (PTE) in urban park soils is essential for human health protection. However, previous studies have mostly focused on the deterministic source-specific health risks, ignoring the health risk assessment from a probabilistic perspective. To fill this gap, we developed a hybrid model that incorporated machine learning (ML) interpretability into positive matrix factorization (PMF) and probability health risk assessment (PHRA) based on the Monte Carlo simulation. The results indicated that concentrations of soil PTEs except for Mn and Sb were significantly higher than their corresponding background values. Random forest (RF) was regarded as the best ML model to identify key drivers for As, Cd, Cr, Cu, Ni, Pb, and Zn, with R2 > 0.60, but was less effective for other soil PTEs (R2 < 0.49). Specifically, the contributions of the four potential pollutionsources were mixed sources, traffic emission, fuel combustion, and building materials, with contribution rate of 24.88%, 30.56%, 28.99%, and 15.56%, respectively. Fuel combustion contributed the most to non-carcinogenic for children (39.45%), male (43.84%), and female (43.76%), and the non-carcinogenic risk could be considered negligiblefor human. However, building materials was the major contributor to carcinogenic risk for children (36.1%), male (44.9%), and female (43.2%). The integration of the RF model with PMF and PHRA improved the accuracy of the results by identifying and quantifying the specific sources of each soil PTE using the relative importance analysis from the RF model. The results of this study assisted in providing efficient strategies for risk management and control of soil PTEs in Beijing parks.
Read full abstract