The mixing of poplar and robinia in coastal saline land is a useful attempt at difficult site afforestation. Investigating the long–term mixing effects of nitrogen–fixing and non–nitrogen–fixing tree species on the spatial heterogeneity of N and P nutrients and their ecological stoichiometric characteristics in the coastal saline–alkali soil can provide a scientific basis for soil improvement and plantation management in the coastal saline–alkali soil. By replacing time with space, poplar and robinia mixed forests and corresponding pure forests with the ages of 3, 7 and 18 years were selected, and soil profiles of 0–20 cm, 20–40 cm and 40–60 cm were dug up to determine the contents of total nitrogen, hydrolyzed nitrogen, total phosphorus and available phosphorus, the activities of soil urease and phosphatase and the number of soil bacteria, fungi and actinomycetes in rhizosphere soil. The mixture of poplar and robinia and the increase in planting years led to the heterogeneity of soil N and P in a coastal saline–alkali forest, which could significantly increase the contents of soil total nitrogen, hydrolyzed nitrogen, total phosphorus and available phosphorus between soil layers. Compared with the pure forest of poplar and robinia at the same age, the soil urease activity in the 0–20 cm soil layer of an 18a poplar and robinia mixed forest increased by 94.75% and 73.36%, and the soil phosphatase activity increased by 30.36% and 70.27%. The mix of poplar and robinia significantly increased the abundance of soil microorganisms in saline–alkali soil. The number of bacteria, fungi and actinomycetes in the 0–20 cm soil layer of the 18a poplar and robinia mixed forest was the highest, which were 703,200, 31,297 and 1903, respectively. Redundancy analysis showed that there was a significant positive correlation between soil N and P nutrient contents, soil enzyme activities and microbial abundance. The soil depth of N and P nutrient decomposition and transformation in the mixed poplar and robinia plantation was expanded. The soil N and P nutrient contents, enzyme activities and microbial abundance in the 40–60 cm soil layer of the mixed forest were higher than those of the pure forest. With the increase in plantation years, the depth of soil that can be used in the forest land is increasing. The mixture of poplar and robinia plantation is an excellent choice for the construction of coastal saline–alkali land plantation, which has a significant mixed gain for the decomposition and transformation of N and P nutrients and increases the depth of the available soil layer in the forest land in coastal saline–alkali land. However, the coastal saline–alkali land soil N/P is < 14 and is still restricted by nitrogen, so the application of nitrogen fertilizer can be increased during the afforestation process.
Read full abstract