Soil gas measurements of radon (222Rn), CO2, and hydrocarbon concentrations, as well as gamma-ray spectrometry, were conducted at two separate locations to estimate the measurement results for known locations of hydrocarbon accumulations in the subsurface and oil seepage on the surface. The aim of the study was to confirm the applicability of the method for identifying migration pathways (e.g., faults) and to detect possible seepages of hydrocarbons to the surface as well as to investigate possible health issue potential about the soil gas analysis results. Site A investigations were performed with a large number of sampling points to provide sufficient spatial coverage to capture the influence of subsurface lithologic variability as well as the influence of the migration pathway on the measured parameters. For the investigation of site B, sampling points were positioned to reflect the situation between the area above producing hydrocarbon fields and areas with no confirmed accumulation. The results presented show that it is possible to distinguish the near-surface lithology (gamma-ray spectrometry), characterize the migration pathway, and indicate the area of oil seepage at the surface. Areas above the known hydrocarbon accumulations generally have elevated radon concentrations and detectable heavier hydrocarbons with sporadic methane in soil gas, which contrasts with the lower radon levels and lack of detectable heavier hydrocarbons in soil gas in the area with no confirmed hydrocarbon accumulation in the subsurface.
Read full abstract