As many contaminated agricultural soils can no longer be used for food crops, lignocellulosic energy crops matter due to their ability to grow on such soils and to produce biomass for biosourced materials and biofuels, thereby reducing the pressure on the limited arable lands. Sorghum bicolor (L.) Moench, can potentially produce a high biomass suitable for producing bioethanol, renewable gasoline, diesel, and sustainable aircraft fuel, despite adverse environmental conditions (e.g. drought, contaminated soils). A 2-year field trial was carried out for the first time in the northern France for assessing sorghum growth on a Cd, Pb and Zn-contaminated agricultural soil amended with humic/fulvic acid, alone and paired with arbuscular mycorrhizal fungi. Sorghum produced on average (in t DW ha−1): 12.4 in year 1 despite experiencing a severe drought season and 15.3 in year 2. Humic/fulvic acids (Lonite 80SP®) and arbuscular mycorrhizal fungi did not significantly act as biostimulants regarding the shoot DW yield and metal uptake of sorghum. The annual shoot Cd, Pb and Zn removals averaged 0.14, 0.20 and 1.97 kg ha−1, respectively. Sorghum cultivation and its metal uptake induced a significant decrease in 0.01 M Ca(NO3)2-extractable soil Cd, Pb and Zn concentrations by 95%, 73% and 95%, respectively, in year 2. Soluble and exchangeable soil Cd, Pb and Zn would be progressively depleted in subsequent crops, which should result in lower pollutant linkages and enhanced ecosystem services. This evidenced sorghum as a relevant plant species for phytomanaging the large area (750 ha) with metal-contaminated soil near the former Pb/Zn Metaleurop Nord smelter, amidst ongoing climate change. The potential bioethanol yield of the harvested sorghum biomass was 5589 L ha−1. Thus sorghum would be a promising candidate for bioethanol production, even in this northern French region.
Read full abstract