Most improved strategies for phytoextraction do not achieve a synergistic enhancement of chromium (Cr) accumulation capacity and biomass. This study investigated the impacts of co-addition of garbage enzyme (GE) and microelectrolytic iron-carbon filler (MF) on soil physicochemical properties, as well as form and uptake of Cr during aging and phytoextraction process. The response of rhizosphere microbial community to co-addition and its role in enhancing the remediation performance of ryegrass was further analyzed. Co-addition of GE and MF during the 12-day aging process resulted in an increase of nutrients, a shift from an oxidising to a reducing soil environment, a decrease of Cr(VI) content, and an enhancement of soil microbial community diversity and richness, creating a suitable environment for subsequent phytoextraction. During the 40-day phytoextraction process, co-addition played a crucial role in facilitating the establishment of a complex, efficient and interdependent ecological network among soil microorganisms and contributed to the evolution of microbial community composition and functional pathways. An increase in the relative abundance of Trichococcus, Azospirillum and g_norank_f_JG30-KF-CM45 elevated soil nutrient levels, while a decrease in the relative abundance of TM7a and Brucella reduced pathogen harbouring. Meanwhile, co-addition increased the relative abundance of Bacillus, Arthrobacter and Exiguobacterium, attenuated Cr phytotoxicity and improved soil biochemical activity. These markedly diminished oxidative damage and improved ryegrass growth by reducing malondialdehyde accumulation. In addition, regular additions of GE and the increase in relative abundance of norank_fnorank_o_Microtrichales led to rhizosphere acidification, which inhibited short-term Cr immobilization and contributed to a notable increase in phytoextraction efficiency. This study presents a strategy to enhance phytoremediation efficiency and soil quality during phytoextraction of Cr-contaminated soils.