The objective of the proposed research is to develop plasma soft X-ray (SXR) radiation imaging that includes spectral information in addition to standard SXR tomography for the purpose of studying, for example, tungsten transport and its interplay with magnetohydrodynamics (MHD) in tokamak plasmas in an ITER-relevant approach. The SXR radiation provides valuable information about both aspects, particularly when measured with high spatial and temporal resolution and when tomographic reconstructions are performed. The spectral data will facilitate the tracking of both light and high-Z impurities. This approach is pertinent to both the advancement of a detailed understanding of physics and the real-time control of plasma, thereby preventing radiative collapses. The significance of this development lies in its ability to provide three-dimensional plasma tomography, a capability that extends beyond the scope of conventional tomography. The utilization of two-dimensional imaging capabilities inherent to Gas Electron Multiplier (GEM) detectors in a toroidal view, in conjunction with the conventional poloidal tomography, allows for the acquisition of three-dimensional information, which should facilitate the study of, for instance, the interplay between impurities and MHD activities. Furthermore, this provides a valuable opportunity to investigate the azimuthal asymmetry of tokamak plasmas, a topic that has rarely been researched. The insights gained from this research could prove invaluable in understanding other toroidal magnetically confined plasmas, such as stellarators, where comprehensive three-dimensional measurements are essential. To illustrate, by attempting to gain access to anisotropic radiation triggered by magnetic reconnection or massive gas injections, such diagnostics will provide the community with enhanced experimental tools to understand runaway electrons (energy distribution and spatial localization) and magnetic reconnection (spatial localization, speed…). This work forms part of the optimization studies of a detecting unit proposed for use in such a diagnostic system, based on GEM technology. The detector is currently under development with the objective of achieving the best spatial resolution feasible with this technology (down to approximately 100 µm). The diagnostic design focuses on the monitoring of photons within the 2-15 keV range. The findings of the optimization studies conducted on the amplification stage of the detector, particularly with regard to the geometrical configuration of the GEM foils, are presented herein. The impact of hole shape and spacing in the amplifying foils on the detector parameters, including the spatial size of the avalanches and the electron gain/multiplication, has been subjected to comprehensive numerical analysis through the utilization of Degrad (v. 3.13) and Garfield++ (v. bd8abc76) software. The results obtained led to the identification of two configurations as the most optimal geometrical configurations of the amplifying foil for the three-foil GEM system for the designed detector. The first configuration comprises cylindrical holes with a diameter of 70 μm, while the second configuration comprises biconical holes with diameters of 70/50/70 μm. Both configurations had a hole spacing of 120 μm.
Read full abstract