Developing high-energy-density Li metal batteries is essential for sustainable progress, necessitating in-depth studies of complex battery reactions. The presence of metallic Cu impurities detrimentally impacts battery performance, leading to issues such as self-discharging and internal soft short-circuit. Nevertheless, their formation mechanism and structural characteristics have not been revealed clearly. Here the formation of single-crystalline Cu nanoparticles during the Li deposition process in anode-free cells was identified by transmission electron microscopy. Through investigation of the chemical state of Cu before and after Li deposition, the formation of Cu NPs was attributed to the reduction of the oxide layers formed on the surface of Cu current collectors. Additionally, it was observed that Cu nanoparticles can be formed inside of deposited Li metal. This work reveals the formation pathway and microstructural characteristics of Cu nanoparticles appearing during Li deposition, underscoring the importance of nanoscale investigations into the underlying battery reactions.