We consider a one-dimensional loop of circumference $L$ crossed by a constant magnetic flux $\ensuremath{\Phi}$ and connected to an infinite lead with coupling parameter $\ensuremath{\varepsilon}$. Assuming that the initial state ${\ensuremath{\psi}}_{0}$ of the particle is confined inside the loop and evolves freely, we analyze the time evolution of the nonescape probability $P({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon},t)$, which is the probability that the particle will still be inside the loop at some later time $t$. In appropriate units, we found that $P({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon},t)={P}_{\ensuremath{\infty}}({\ensuremath{\psi}}_{0},\ensuremath{\Phi})+{\ensuremath{\sum}}_{k=1}^{\ensuremath{\infty}}{C}_{k}({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon})/{t}^{k}$. The constant ${P}_{\ensuremath{\infty}}({\ensuremath{\psi}}_{0},\ensuremath{\Phi})$ is independent of $L$ and $\ensuremath{\varepsilon}$, and vanishes if ${\ensuremath{\psi}}_{0}$ has no bound state components or if $|\mathrm{cos}(\ensuremath{\Phi})|\ensuremath{\ne}1$. The coefficients ${C}_{1}({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon})$ and ${C}_{3}({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon})$ depend on the initial state ${\ensuremath{\psi}}_{0}$ of the particle, but only the momentum $k=\ensuremath{\Phi}/L$ is involved. There are initial states ${\ensuremath{\psi}}_{0}$ for which $P({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon},t)\ensuremath{\sim}{C}_{\ensuremath{\delta}}({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon})/{t}^{\ensuremath{\delta}}$, as $t\ensuremath{\rightarrow}\ensuremath{\infty}$, where $\ensuremath{\delta}=1$ if $\mathrm{cos}(\ensuremath{\Phi})=1$ and $\ensuremath{\delta}=3$ if $\mathrm{cos}(\ensuremath{\Phi})\ensuremath{\ne}1$. Thus, by submitting the loop to an external magnetic flux, one may induce a radical change in the asymptotic decay rate of $P({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon},t)$. Interestingly, if $\mathrm{cos}(\ensuremath{\Phi})=1$, then ${C}_{1}({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon})$ decreases with $\ensuremath{\varepsilon}$ (i.e., the particle escapes faster in the long run) while in the case $\mathrm{cos}(\ensuremath{\Phi})\ensuremath{\ne}1$, the coefficient ${C}_{3}({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon})$ increases with $\ensuremath{\varepsilon}$ (i.e., the particle escapes slower in the long run). Assuming the particle to be initially in a bound state of the loop with $\ensuremath{\Phi}=0$, we compute explicit relations and present some numerical results showing a global picture in time of $P({\ensuremath{\psi}}_{0},L,\ensuremath{\Phi},\ensuremath{\varepsilon},t)$. Finally, by using the pseudospectral method, we consider the interacting case with soft-core Coulomb potentials.