Herein, we report an efficient enantioselective cleavage of the acyl- moiety of a set of α- phenyl ethyl esters with different chain-lengths catalyzed by lipase B from Candida antarctica (CAL-B) by comparing two reactional approaches: anhydrous media with sodium carbonates and micro-aqueous medium. The deacylation is performed in organic solvent, in the presence of Na2CO3 in the first case, and by addition of a drop of phosphate buffer solution pH 7 in the second. The results show the high efficiency of the deacylation in the presence of the sodium carbonate for the enzymatic resolution of all the esters and that in term of reactivity (31% ≤ conv ≤ 50%) and selectivity (E > 200). While, during the hydrolysis in micro-aqueous media, the conversion is strongly affected by the length of the acyl-chain side, the conversion decreases from conv = 50% with the 1-phenylethyl acetate 1a to conv = 19% with 1-phenyethyl dodecanoate 6a, and this, even if the selectivity remains high (E > 89). In both conditions, the lipase CAL-B shows a high enantioselectivities in favor of (R)-1-phenyl ethanol enantiomer (conv > 45%, E > 200) but the reactivity is modulated by the form and the size of the acyl-chain side.Graphic Abstract
Read full abstract