Socioecological factors are associated with life-history patterns and growth trajectories among primates. Under certain conditions, selection may favor a temporal decoupling of growth and major life-history events such as sexual maturation or natal dispersal. Yet, empirical tests of these associations in wild populations remain scarce owing to the lack of non-invasive methods to capture growth trajectories. In this study, we first compared two non-invasive methods of digital photogrammetry. Then, we used parallel laser photogrammetry to investigate forearm growth of wild Assamese macaque males and females in their natural habitat at Phu Khieo Wildlife Sanctuary, Thailand to test life-history and socio-ecological hypotheses. Across 48 males and 44 females, we estimated growth trajectories and pseudo-velocity curves by applying quadratic plateau models and non-parametric LOESS regressions. We assessed the development of sexual dimorphism by comparing the sexes at five different ages. Females had completed 96% of their growth at the age at first birth (5.9 years) and ceased growing at 7.1 years of age. Males, in contrast, grew until well after their average age of natal dispersal: they reached 81% of their size at the age of natal dispersal (4.0 years), and ceased growing only at 9.0 years of age, much later than females. Sexual dimorphism in forearm length was driven by an extended growth period in males, which is expected for males dispersing between multimale and multifemale groups and not facing the risk of being ousted by other larger males. Our results contradict the neonatal investment hypothesis that predicts a desynchronization of investment in growth and reproduction only in female baboons, but not other papionins producing cheaper neonates. Furthermore, male Assamese macaques do not delay natal dispersal until they are fully grown, in accordance with predictions of the male-career-framework for species with low to medium level of direct competition.