PurposeMost of the existing time-cost-quality-environmental impact trade-off (TCQET) analysis models have focused on solving a simple project representation without taking typical activity and project characteristics into account. This study aims to present a novel approach called the “hybrid opposition learning-based Aquila Optimizer” (HOLAO) for optimizing TCQET decisions in generalized construction projects.Design/methodology/approachIn this paper, a HOLAO algorithm is designed, incorporating the quasi-opposition-based learning (QOBL) and quasi-reflection-based learning (QRBL) strategies in the initial population and generation jumping phases, respectively. The crowded distance rank (CDR) mechanism is utilized to rank the optimal Pareto-front solutions to assist decision-makers (DMs) in achieving a single compromise solution.FindingsThe efficacy of the proposed methodology is evaluated by examining TCQET problems, involving 69 and 290 activities, respectively. Results indicate that the HOLAO provides competitive solutions for TCQET problems in construction projects. It is observed that the algorithm surpasses multiple objective social group optimization (MOSGO), plain Aquila Optimization (AO), QRBL and QOBL algorithms in terms of both number of function evaluations (NFE) and hypervolume (HV) indicator.Originality/valueThis paper introduces a novel concept called hybrid opposition-based learning (HOL), which incorporates two opposition strategies: QOBL as an explorative opposition and QRBL as an exploitative opposition. Achieving an effective balance between exploration and exploitation is crucial for the success of any algorithm. To this end, QOBL and QRBL are developed to ensure a proper equilibrium between the exploration and exploitation phases of the basic AO algorithm. The third contribution is to provide TCQET resource utilizations (construction plans) to evaluate the impact of these resources on the construction project performance.
Read full abstract