Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide, characterized by high mortality. This study aimed to explore the prognostic value and function of alternative lengthening of telomeres (ALT)-related genes in HCC. Differentially expressed genes (DEGs) were identified based on The Cancer Genome Atlas (TCGA) and then intersected with ALT-related genes to obtain ALTDEGs. Risk score model was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression and validated with Gene Expression Omnibus (GEO) datasets. The predictive efficacy of the risk score and ALTs-score was evaluated by Kaplan-Meier curves, time-ROC curves, and the nomogram analyses. The impacts of SMG5 silencing on the HCC cell behaviors were assessed by CCK-8, wound healing, and Transwell assays. A total of 500 ALTDEGs were screened and 13 genes (CDCA8, SMG5, RAD54B, FOXD2, NOL10, RRP12, CCT5, CCT4, HDAC1, DDX1, HRG, HDAC2, and PPP1CB) were identified for constructing a prognostic model. The overall survival (OS) curves, time-ROC curves, and nomograms based on the risk score or ALTs-score were developed to optimally predict the survival of HCC patients. ALTs-score was correlated with immune infiltration and confirmed its value in predicting immunotherapy outcomes. Furthermore, RT-qPCR demonstrated that eight risk signature genes were up-regulated in HCC cells. SMG5 silencing suppressed the proliferation, migration, and invasion of HCC cells. It was also found that SMG5 silencing reduced C-circle level in SNU-387 cells. We identified new ALT-related prognostic biomarkers for HCC. SMG5 knockdown inhibited the HCC progression, which might be a promising target for HCC therapy.
Read full abstract