We collected environmental and habitat data for nymphs of 12 dragonfly species (Odonata: Anisoptera) from 91 stream sites throughout eastern Texas, including urban and non-urban locations. Understanding the relationship of dragonflies to habitat structure and other environmental variables is crucial for the purpose of conserving these insects and better using them as predictive tools for water quality assessments, and refining tolerance values. The objectives of this study were to determine the key environmental variables influencing the diversity and distribution of dragonflies in eastern Texas streams, and further determine if differences in those factors could be observed between urban and nonurban sites. We collected samples separately from benthic habitats and woody snag habitats. Significantly fewer sites were observed to have dragonfly species on snag habitat (mean = 1.25) compared to benthic samples (mean = 14.67) (t-test, p = 0.001). The number of dragonfly species collected among non-urban streams (mean = 9.83) was not significantly different than urban streams (mean = 6.08; t-test, p = 0.07). Detrended correspondence analysis of benthic and snag habitat data collected from non-urban and urban locations showed that most of the species are oriented most closely to benthic habitats in non-urban streams. Snag habitat was shown to be poorly ordinated for all of the species. A canonical correspondence analysis of 29 water quality and habitat variables as environmental determinants of dragonfly diversity and distribution showed that distributional relationships among species are complex and often described by multiple environmental factors.