In this study, a fully bio-based intumescent flame retardant, phytic acid vanillin arginine salt (VR-PA), was designed and synthesized by l-arginine (AR) and vanillin (VA) via a Schiff base reaction, followed by the introduction of phytic acid (PA) using electrostatic ionic interactions. The intumescent flame retardant, VR-PA, was incorporated into wood flour polypropylene composites (WFPP) to enhance their flame retardant and smoke suppression properties. Compared to pure WF, the limiting oxygen index (LOI) of WFPP with 20 wt% VR-PA increased to 28.2 %, while the peak heat release rate and total heat release were reduced by 35.4 % and 20.6 %, respectively. Additionally, the WF with 15 wt% VR-PA exhibited the greatest reduction in total smoke production, with a significant decrease of 42.1 %. The improved flame retardant and smoke suppression performance of the WF is attributed to the free radical trapping effect of VR-PA in the gas phase during the combustion process, as well as the formation of an expanded and continuous carbon layer during in the condensed phase. This study provides a green method to enhance the flame retardancy and smoke suppression of WFPP composites.
Read full abstract