Chiral smectic-A liquid crystal elastomers are rubbery materials composed of a lamellar arrangement of liquid crystalline mesogens. It has been shown experimentally that these materials shear when subjected to an electric field due to the electrically induced tilt of the director. Experiments have also shown that shearing a chiral smectic-A elastomer gives rise to a polarization. Roughly, the shear force tilts the directors which, in turn, induce electric dipoles. This paper builds on previous works and models the electromechanical response of smectic-A elastomers using free energy contributions that are associated with the lamellar structure, the relative tilt between the director and the layer normal, and the coupling between the director and the electric field. To illustrate the merit of the proposed model, two cases are considered-a deformation induced polarization and an electrically induced deformation. The predictions according to these two models qualitatively agree with experimental findings. Finally, a cylinder composed of helical smectic layers is also considered. It is shown that the electromechanical response varies as a function of the helix angle.