The research mainly focuses on the inefficient planning of autonomous distribution and storage modes of distribution vehicles in smart city logistics and distribution, which in turn leads to poor customer experience, rising distribution costs, and wasted distribution resources. From the perspective of information processing in the logistics distribution process, the study takes multi-angle and multi-source information collection and fusion processing strategy as the main basis to help smart delivery robots realize map construction and autonomous positioning in the distribution process, and then facilitate real-time logistics distribution and storage mode planning by robots in combination with their own states. The research results show that the algorithm accuracy, standard error, and average running time of the extended Kalman filter localization model designed in the study are 0.96, 1.52, and 105s, respectively, with the algorithm accuracy being the highest and the other two values being the lowest in its class. Meanwhile, in the simulation logistics planning, the research-designed logistics planning model has the strongest information capturing ability, and the planning of distribution routes and storage modes is more reasonable, which can provide more efficient autonomous planning solutions.