Much of the work developed on biodiversity dynamics due to climate change focuses on large scales. Yet, we know that small scale is critical to fully understand biodiversity change, particularly for plants and small or less mobile organisms which might seek refuge in sites that keep specific microclimatic and biotic conditions dampening the effects of large-scale changes. The project BASS - Biodiversity Assessment at Small Scales - aims to explore the intricate relationships between small-scale environmental variations in space and time and biodiversity patterns. Central to our study is researching how microclimatic conditions, such as potential solar radiation, influence species occurrence, abundance, community composition and biotic interactions within a Mediterranean context. Our objectives include gaining a deeper understanding of the effects of localised environmental conditions and their change in time on biodiversity, providing critical data for an under-researched Mediterranean Biodiversity Hotspot region, and examining the dynamics of small-sized species, particularly plants and invertebrates. We have established a network of 16 fixed sampling points across the Lisbon University field station - Herdade da Ribeira Abaixo (HRA), Grândola (South Portugal): eight with high and eight with low potential solar radiation. Each of these plots will serve as a 'mesocosm' for detailed ecological studies in the next decades. This framework will support a variety of research projects each focusing on different taxa and questions, including Masters' theses, PhD dissertations and independent studies, thereby fostering a collaborative research environment. By integrating previously collected data during the last three decades with new findings, we aim to offer valuable insights into the processes underlying ecosystem functioning and change at small spatial scales. This project not only addresses fundamental ecological questions, but also contributes to sustainable landscape management and biodiversity conservation efforts.
Read full abstract