This study investigates the multifaceted interdependencies among powder characteristics (i.e., non-spherical morphology and particle size ranging 50-120 or 75-175µm), laser powder bed fusion (L-PBF) process condition (i.e., contouring), post-process treatments (i.e., hot isostatic pressing (HIP) and mechanical grinding) on the pore, microstructure, surface finish, and fatigue behavior of additively manufactured Ti-6Al-4V samples. Microstructure analysis shows a phase transformation α′ → α+β microstructure after HIP treatment (at 899±14 °C for 2h under the applied pressure of 1034±34bar) of the as-built Ti-6Al-4V parts. The findings from pore analysis using micro-computed tomography (μ-CT) show an increase in sub-surface pores when relatively smaller powders are L-PBF processed including contouring. Surface optical profilometry reveals a decrease in surface roughness when fine powder is L-PBF including contouring. Pore analysis conducted through μ-CT reveals that the presence of lack-of-fusion pores within the L-PBF processed coarse powder is more pronounced when compared to the fine powder. Furthermore, HIP treatment does not eliminate these pores. The fracture failure in as-printed parts occurs at the surface, while the combination of HIP and mechanical grinding alters crack initiation to subsurface pore defects. Fractography reveals that HIP and as-built samples followed the facet formation and pseudo-brittle fracture mechanisms, respectively. Fatigue life assessments, supported by statistical analysis, indicate that mechanical grinding and HIP significantly enhanced fatigue resistance, approaching the benchmarks set by wrought Ti-6Al-4V alloy. A fatigue prediction model which considers the surface roughness as a micro-notch has been used.
Read full abstract