As an excellent fusion tag for expressing heterologous proteins, yeast SUMO (small ubiquitin-related modifier) has unique advantages such as improving solubility, promoting stability, and reducing degradation, but it lacks a simple and rapid purification method. Camelid single-domain antibodies (VHHs or nanobodies) show great promise as an efficient tool in analytical application. In this study, VHHs against SUMO protein were isolated for the first time using biopanning of an immune camelid nanobody library. Among these nanobodies, VS2 demonstrated a high expression level (1.12 g L − 1), and a high affinity for SUMO (2.26 nM). Meanwhile, VHHs were coupled to agarose resins by cysteine at the C-terminal to form affinity chromatography resins. The VS2 resin showed excellent specificity and a dynamic binding capacity for SUMO, SUMO-DsbA (disulfide oxidoreductase) and SUMO-SAM (S-adenosylmethionine synthetase) were 2.41 mg/mL resin, 7.57 mg/mL resin and 16.23 mg/mL resin, respectively. Furthermore, the VS2 resin enabled one-step purification of SUMO-fusions [SUMO-Fc (human IgG1-Fc fragment), SUMO-IGF1 (human insulin-like growth factor 1), SUMO-FGF21 (human fibroblast growth factor 21), SUMO-G-CSF (human Granulocyte colony-stimulating factor), SUMO-PDGF (human platelet-derived growth factor) and SUMO-PAS200 (conformationally disordered polypeptide chains with expanded hydrodynamic volume comprising the small residues Pro, Ala-and Ser)], and maintained binding capacity and selectivity over 25 purification cycles, each including 15 min of cleaning-in-place with 0.1 M NaOH. This study demonstrated that the VS2 resin was a useful tool at the laboratory scale for one-step purification of various SUMO fusions from complex mixtures.
Read full abstract