The poor surgical efficacy and recurrence of glioblastoma (GBM) are due to its lack of visible infiltrative features. Our bioinformatics study suggests that low expression of small ubiquitin-like modifier (SUMO)-specific protease 7 (SENP7) indicates poor prognosis in GBM. This study investigated the effect of SENP7 expression on the invasion, migration, and proliferation of GBM cells and aims to identify the SUMO target proteins affected by SENP7. SENP7 expression was analyzed in eight GBM tumor samples and four GBM cell lines, comparing them to normal brain tissue. The effect of SENP7 overexpression on GBM LN229 cell migration, invasion, and proliferation was examined through in vitro assays. Furthermore, four SUMO target proteins involved in tumor invasion and proliferation (CDK6, matrix metalloproteinase-9 [MMP9], AKT, and HIF-1α) were studied to explore SENP7's molecular mechanism. SENP7 expression was significantly lower in GBM tumors compared to normal tissue. SENP7 overexpression in LN229 cells inhibited migration and invasion without affecting proliferation. Overexpression reduced the levels of MMP9, AKT, and HIF-1α, but not CDK6. Immunohistochemical analysis showed decreased MMP9 and CD31 levels, suggesting reduced tumor invasion and angiogenesis. However, SENP7 overexpression did not affect tumor growth in vivo. SENP7 inhibits GBM invasion by dissociating proteins associated with tumor invasion from SUMO2/3, providing a potential target for future GBM therapies.
Read full abstract