Understanding the shear mechanical properties of shale reservoirs is of great significance in the study of the formation stability around horizontal shale wells and the propagation and evolution of fractures for shale fracturing. However, the existing direct shear test results are limited due to small sample sizes and low shear rates. Based on previous experimental research results, the mechanical properties of anisotropic reservoir shale in direct shear tests with different experimental conditions were explored in this study. It was found that the shear mode, shear strain rate, and normal stress have a significant impact on the deformation and failure characteristics of shale. The peak shear displacement, peak shear strength, and shear stiffness of shale present an increasing trend of fluctuation, with an increase in the bedding angle. The peak shear strength of shale decreases with an increase in the shear strain rate, and this decrease trend descends with an increase in the shear strain rate. The shape of the shear fracture zone and the shear fracture mode of shale exhibit bedding effect characteristics. The fractal dimension of the shale shear fracture surface morphology shows a trend of fluctuation with the variation in the bedding angle. Further, the shear strain rate was found to play a dominant role in the fractal dimension of the shear fracture surface. The larger shear strain rate strengthens the bedding effect of the roughness for the shear fracture surface morphology. The results of this study provide a theoretical reference for determining the engineering geomechanics characteristics of shale reservoirs.
Read full abstract