Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by amyloid fibril deposition. The TTR c.148G > T mutation (V30L) in ATTR is rarely reported, and its biochemical properties are unknown. Seven patients and two asymptomatic carriers from two unrelated families diagnosed with V30L variant of ATTR were included. Data on clinical manifestations, laboratory examination, electrophysiology, ophthalmological corneal confocal microscopy (CCM), pathology and molecular biological experiments was collected and analyzed. Most patients initially experienced paresthesia, with varying degrees of peripheral neuropathy, autonomic dysfunction, and cardiac involvement. Nerve conduction studies showed extensive motor and sensory nerve involvement in upper and lower limbs. CCM revealed reduced corneal nerve density and fiber length. Sural nerve biopsies indicated loss of myelinated nerve fibers, with neurogenic patterns in gastrocnemius muscle biopsies. Asymptomatic carriers had nearly normal electrophysiology but mild reductions in corneal nerve fiber density and length. Sural nerve biopsies in carriers showed mild reductions in small myelinated nerve fibers. V30L mutation impaired thermodynamic and kinetic stability of the mutant protein. Plasma TTR tetramer concentration was lower in ATTR V30L patients compared to healthy donors. Small molecule stabilizers failed to exhibit satisfactory inhibition on fibril formation of V30L mutation in vitro. This study highlights the multisystem involvement in ATTR V30L patients, including neuropathy and cardiac issues. Both patients and carriers showed abnormalities in nerve conduction, corneal microscopy, and pathology. The V30L mutation impaired protein stability and reduced plasma TTR tetramer levels. Small molecule stabilizers were ineffective, indicating a need for alternative treatments.
Read full abstract