Cross-immunity, as an evolutionary driver, can contribute to pathogen evolution, particularly pathogen diversity. Healthcare interventions aimed at reducing disease severity or transmission are commonly used to control diseases and can also induce pathogen evolution. Understanding pathogen evolution in the context of cross-immunity and healthcare interventions is crucial for infection control.This study starts by modelling cross-immunity, the extent of which is determined by strain traits and host characteristics. Given that all hosts have the same characteristics, full cross-immunity between residents and mutants occurs when mutation step sizes are small enough. Cross-immunity can be partial when the step size is large. The presence of partial cross-immunity reduces pathogen load and shortens the infectious period inside hosts, reducing transmission between hosts and improving host population survival and recovery.This study focuses on how pathogens evolve through small and large mutational steps and how healthcare interventions affect pathogen evolution. Using the theory of adaptive dynamics, we found that when mutational steps are small (only full cross-immunity is present), pathogen diversity cannot occur because it maximises the basic reproduction number. This results in intermediate values for both pathogen growth and clearance rates. However, when large mutational steps are allowed (with full and partial cross-immunity present), pathogens can evolve into multiple strains and induce pathogen diversity. The study also shows that different healthcare interventions can have varying effects on pathogen evolution. Generally, low levels of intervention are more likely to induce strain diversity, while high levels are more likely to result in strain reduction.