Implementing bug-free concurrent programs is a challenging task in modern software development. State-of-the-art static analyses find hundreds of concurrency bugs in production code, scaling to large codebases. Yet, fixing these bugs in constantly changing codebases represents a daunting effort for programmers, particularly because a fix in the concurrent code can introduce other bugs in a subtle way.In this work, we show how to harness compositional static analysis for concurrency bug detection, to enable a new Automated Program Repair (APR) technique for data races in large concurrent Java codebases. The key innovation of our work is an algorithm that translates procedure summaries inferred by the analysis tool for the purpose of bug reporting into small local patches that fix concurrency bugs (without introducing new ones). This synergy makes it possible to extend the virtues of compositional static concurrency analysis to APR, making our approacheffective(it can detect and fix many more bugs than existing tools for data race repair),scalable(it takes seconds to analyze and suggest fixes for sizeable codebases), andusable(generally, it does not require annotations from the users and can performcontinuousautomated repair). Our study, conducted on popular open-source projects, has confirmed that our tool automatically produces concurrency fixes similar to those proposed by the developers in the past.
Read full abstract