When Salmonella Typhimurium is ingested by German cockroaches, the bacteria replicate in the gut and persist for at least 7 d, enabling transmission in the feces. However, the mechanisms that facilitate survival and persistence in the cockroach gut remain poorly detailed. We previously reported the formation of biofilm-like aggregate populations of S. Typhimurium in the gut of cockroaches upon ingestion. We also reported that deletion of the type-1 fimbrial subunit of S. Typhimurium, fimA, leads to a reduced bacterial load in the cockroach gut. Here, we link these observations and provide further insight into the mechanism and function of S. Typhimurium aggregation in the gut of the cockroach. We show that S. Typhimurium but not Escherichia coli forms aggregated populations in the cockroach gut, and that aggregate formation requires fimA but not the biofilm formation-related genes csgA and csgD. Furthermore, we show that S. Typhimurium aggregates are formed using small granular deposits present in the cockroach gut, which exhibit properties consistent with melanin, as substrates. These melanin deposits are prevalent in the guts of both immature and adult cockroaches from laboratory colonies and are correlated with increased gut bacterial density while being entirely absent in gnotobiotic cockroaches reared without exposure to environmental bacteria, indicating they are induced as a response to the gut microbiota. When cockroaches lacking melanin deposits in the gut are fed S. Typhimurium, they exhibit lower rates of infection than those harboring melanin deposits, demonstrating that microbiota-induced melanin deposits enhance infection of the gut of the vector. IMPORTANCE Cockroaches, including the German cockroach (Blattella germanica), can be both mechanical and biological vectors of pathogenic bacteria. Together, our data reveal a novel mechanism by which S. Typhimurium interacts with the cockroach gut and its microbiota that promotes infection of the vector. These findings exemplify the emerging but underappreciated complexity of the relationship between cockroaches and S. Typhimurium.
Read full abstract