In order to measure the transmission wavefront of laser rods and to improve the edge diffraction effect of small-aperture laser rods measured by Tayman or Fizeau interferometer, a variable-inclination Mach-Zehnder interferometer was proposed. The incident angle was changed by adjusting the tilting attitude of the phase shifting reflector, then the optical path difference was changed that the phase shift was introduced to the coherent light and the phase shifting interferometry was realized. The transmission wavefront of a laser rod (Nd:YAG) with the diameter of 6 mm and the length of 60 mm was measured by this interferometer, the peak-valley (PV) and root mean square (RMS) of the wavefront were 0.391λ and 0.056λ. The same laser rod was measured by ZYGO GPI XP interferometer, the peak-valley (PV) and root mean square (RMS) were 0.370λ and 0.064λ. The comparison results show that the interferometer can achieve high-precision detection of transmission wavefront of laser robs. The variable-inclination Mach-Zehnder interferometer has high phase-shifting precision and wide phase-shifting range, and the beam in the system can pass through the laser rod only once, which can suppress the multi-beam interference and improve the edge diffraction effect of the small-aperture laser rods.
Read full abstract