AbstractThe absence of N2 flux measurements in liquid manure-amended soils has resulted in a poor understanding of the effect of manure application on gaseous N losses. The aim of this study was to quantify N2, N2O, CO2, N2O reduction to N2, depth distribution of moisture, water-extractable organic C, NO3−, NH4+, pH, and diffusivity in a laboratory incubation experiment with an arable silt-loam soil. To quantify N processes and gaseous fluxes, 15N tracing was applied. An artificial livestock slurry-mixture was added to the soil in various treatments (control, surface or injected application; slurry-application rate: 42.9 kg N ha− 1; soil water content of either 40% or 60% water-filled pore space (WFPS)). The soil was incubated for 10 days. The depth distribution of the control parameters was measured twice during the experiment on days 5 and 10. The average increase in N2 and N2O fluxes from denitrification was about 900% in slurry-amended soils. The highest N2 and N2O fluxes from denitrification were measured in the slurry injection, 60% WFPS treatment (7.83 ± 3.50 and 11.22 ± 7.60 mg N m− 2 d− 1, respectively). The hypothesis that injected slurry at a higher water content enhances denitrification was confirmed. This study provides important insights into the formation, spatial and temporal variation of the manure-soil hotspot and its impact on the denitrification process. The results will form part of a dataset to develop, improve and test manure application submodules of biogeochemical models and will help to understand in detail the effect of hotspots on N-cycling in manure-treated soils.
Read full abstract