In 2018, human anisakiasis caused by the ingestion of the skipjack tuna Katsuwonus pelamis occurred frequently in Japan. This may be attributable to a heavy infection of A. simplex (s.s.) in the host's muscle tissue. In this study, we investigate infection levels of anisakid L3 larvae in skipjack tuna captured in Japanese waters afterward (2019–2020) to contribute to predict and prevent the outbreak of human anisakiasis. A total of 476 larvae were detected from 78 out of 85 skipjack tuna captured at 14 stations of the Pacific and East China Sea. The present parasitological survey suggests that infection levels in 2019–2020 were low, comparing that in 2018; in total only seven larvae were found from the host's muscle tissue. The collected larvae were identified by molecular methods to Anisakis berlandi, A. pegreffii, A. simplex (s.s.), A. typica and Skrjabinisakis physeteris (s.l.). Not only larvae of A. simplex (s.s.) but also those of A. berlandi were found from the muscle tissue and thus the latter species may also be a causative agent of human anisakiasis. In addition, this study confirmed the geographic distribution pattern that A. simplex (s.s.) is abundant in the Pacific, while A. pegreffii is dominant in the East China Sea. Our results contribute to understanding the risk of food poisoning and stock delimitation of host animals.
Read full abstract