P2RY6 is highly expressed in skin keratinocytes, but its function in skin diseases is unclear. We use a two-step chemical induction method to induce mouse skin tumor formation. Multiple invitro and invivo assays were used to explore the role of P2RY6 in skin tumors. We report that P2ry6-deficient mice exhibit marked resistance to 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin papilloma formation compared with wild-type mice. Consistent with these findings, epidermal hyperplasia in response to TPA was suppressed in the P2ry6-knockout or MRS2578 (P2RY6 antagonist)-treated mice. The dramatic decrease in hyperplasia and tumorigenesis due to P2ry6 disruption was associated with the suppression of TPA-induced keratinocyte proliferation and inflammatory reactions. Notably, P2ry6 deletion prevented the TPA-induced increase in YAP nuclear accumulation and its downstream gene expression in an MST/LATS1-dependent manner. On TPA stimulation, enhanced activation of MAPK/extracellular signal‒regulated kinase kinase 1 and β-catenin were also impaired in P2ry6-knockout primary keratinocytes, tumor tissues, or MRS2578-treated HaCaT cells. Moreover, mutual promotion of the YAP and β-catenin signaling pathways was observed in normal skin cells treated with TPA, whereas P2ry6 deletion could inhibit their crosstalk by regulating MAPK/extracellular signal‒regulated kinase kinase 1. Thus, P2RY6 is a critical positive regulator of skin tumorigenesis through the modulation of the Hippo/YAP and Wnt/β-catenin signaling pathways.
Read full abstract