The in vitro permeation testing (IVPT) of topical products is performed across the human cadaver skin, which is stored frozen for a prolonged duration. The cryo-preservation technique is not economical and is a cumbersome process. Moreover, prolonged skin preservation in a frozen state and frequent freeze-thawing are known to affect the integrity of the skin barrier. Therefore, lyophilization was explored as an alternative to protect the skin tissue from microbial contamination and degeneration. Notably, the project's objective was to investigate the impact of the freeze-drying process on the skin's barrier properties. The morphometrics of the lyophilized skin were measured. Histological studies did not reveal any notable changes in the organization and intactness of the layers due to the freeze-drying process. The biophysical attributes of the skin, such as transepidermal water evaporation rate and transepidermal electrical resistivity (TEER), were not significantly different between the control skin (not subjected to the freeze-drying process) and the freeze-dried skin (FDS). The permeability of caffeine, a hydrophilic model permeant, and nicotine, a lipophilic model permeant, were consistent across the control and the FDS. It is evident from the studies that the lyophilization process did not significantly impact the barrier properties and permeability of the skin.