Pressure Ulcers (PU) are a major burden for affected patients and healthcare providers. Current detection methods involve visual assessments of the skin by healthcare professionals. This has been shown to be subjective and unreliable, with challenges associated with identifying erythema in darker colour skin. Although there exists a number of promising non-invasive biophysical techniques such as ultrasound, capacitance measurements, and thermography, the present study focuses on directly measuring the changes in the inflammatory status of the skin and underlying tissues. Therefore, in this study, we aim to analyse inflammatory cytokines collected through non-invasive sampling techniques to detect early signs of skin damage. Thirty hospitalised patients presenting with Stage I PU were recruited to evaluate the inflammatory response of skin at the site of damage and an adjacent healthy control site. Sebutapes were collected over three sessions to investigate the temporal changes in the inflammatory response. The panel of cytokines investigated included high-abundance cytokines, namely, IL-1α and IL-1RA, and low abundance cytokines; IL-6, IL-8, TNF-α, INF-γ, IL-33, IL-1β and G-CSF. Spatial and temporal differences between sites were assessed and thresholds were used to determine the sensitivity and specificity of each biomarker. Theresultssuggest significant (P < .05) spatial changes in the inflammatory response, with upregulation of IL-1α, IL-8, and G-CSF as well as down-regulation of IL-1RA over the Stage I PU compared with the adjacent control site. There were no significant temporal differences between the three sessions. Selected cytokines, namely, IL-1α, IL-1RA, IL-8, G-CSF, and the ratio IL-1α/IL-1RA offered clear delineation in the classification of healthy and Stage-I PU skin sites, with receiver operating characteristic curves demonstrating high sensitivity and specificity. There were limited influences of intrinsic and extrinsic factors on the biomarker response. Inflammatory markers provided a high level of discrimination between the sites presenting with Stage I PU and an adjacent healthy skin site, in a cohort of elderly inpatients. Indeed, the ratio of IL-1α to IL-1RA provided the highest sensitivity and specificity, indicative that inflammatory homeostasis is affected at the PU site. There was a marginal influence of intrinsic and extrinsic factors, demonstrating the localised effects of the inflammation. Further studies are required to investigate the potential of inflammatory cytokines incorporated within Point of Care technologies, to support routine clinical use.
Read full abstract