Systematic assessments on the effects of skidding systems on features of forest blueberry pine soil were conducted as part of this study. Assessing the ecological efficiency of forest skidding machines showed that the most significant impact (by 2.0–2.2 times) on soil compaction was observed at loading sites rather than during transportation. Lightweight loam density and sand density increased by 25% and 2%, respectively, after more than two passages of the skidding system. Pressure in 33L-32 tires of forestry machinery in operation on a solid surface varied from 46.5 kPa to 196 kPa at maximum load. Studying the impact of tires on soil compaction showed that the environmental efficiency of forestry equipment can be enhanced if the optimal tire pressure at average loads does not exceed 70 kPa for tracked vehicles and 150 kPa for wheeled vehicles in summer seasons. When ground grips were fully immersed, the pressure of forwarders on soil was reduced. These study results can be used to establish organizational and technological measures in order to manage the negative impact of skidding systems and to increase the environmental effects of their performance.