Sex allocation theories predict that under different ecological conditions the production of sons and daughters will affect parental fitness differently. Skewed offspring sex ratios often occur under captive conditions where individuals are exposed to nutritional and social conditions that differ from nature. Here, we analyzed 29 years of offspring sex ratio data from a captive population of an endangered marsupial, the Numbat (Myrmecobius fasciatus). We partitioned variation in offspring sex ratio based on parental origin (captive- vs. wild-bred), parental weight, maternal age, and maternal reproductive history. Our analyses revealed no effect of parental weight or maternal origin on offspring sex ratio-however, there was a significant effect of paternal origin. Data visualization indicated that captive-bred males tended to produce male-biased litters. We discuss the result in relation to recent studies that have shown that male mammals have the capacity to be arbiters of sex allocation and highlight candidate mechanisms, but consider it with caution due to the small sample size from which the result was derived. We performed a population viability analysis (PVA) to explore the potential impact of a sex ratio skew on the sustainability of the captive Numbat population under hypothetical scenarios. Our PVA revealed that supplementation with wild individuals is critical to the persistence of the captive Numbat population and that a biased sex ratio will lead to extinction of the captive colony under certain conditions. Overall, our study demonstrates that covert sex ratio skews can persist undetected in captive populations, which have the potential to become impactful and compromise population sustainability under changed management processes.
Read full abstract