Assuming the underlying statistical distribution of data is critical in information theory, as it impacts the accuracy and efficiency of communication and the definition of entropy. The real-world data are widely assumed to follow the normal distribution. To better comprehend the skewness of the data, many models more flexible than the normal distribution have been proposed, such as the generalized alpha skew-t (GAST) distribution. This paper studies some properties of the GAST distribution, including the calculation of the moments, and the relationship between the number of peaks and the GAST parameters with some proofs. For complex probability distributions, representative points (RPs) are useful due to the convenience of manipulation, computation and analysis. The relative entropy of two probability distributions could have been a good criterion for the purpose of generating RPs of a specific distribution but is not popularly used due to computational complexity. Hence, this paper only provides three ways to obtain RPs of the GAST distribution, Monte Carlo (MC), quasi-Monte Carlo (QMC), and mean square error (MSE). The three types of RPs are utilized in estimating moments and densities of the GAST distribution with known and unknown parameters. The MSE representative points perform the best among all case studies. For unknown parameter cases, a revised maximum likelihood estimation (MLE) method of parameter estimation is compared with the plain MLE method. It indicates that the revised MLE method is suitable for the GAST distribution having a unimodal or unobvious bimodal pattern. This paper includes two real-data applications in which the GAST model appears adaptable to various types of data.