Thermoplastic composites show potential in increasing the manufacturing production rate of composite aerospace structures. This is largely due to their ability to be consolidated quickly using automated processes. A variety of reinforced thermoplastic material forms are offered that can be processed multiple ways in order to meet structural performance requirements at the necessary production volumes without substantial compromise. Intrinsically, this requires generating a significant amount of statistically-based material property data for each unique material and process combination. Currently, the National Institute for Aviation Research (NIAR) and the Federal Aviation Administration (FAA) are developing a material qualification framework for compression molded discontinuous fiber thermoplastic composites in consensus with industry experts. To aid in the development of the qualification framework, a screening test matrix was formed to identify the key processing parameters and evaluate the appropriate test methods and specimen sizes. Three main variables were considered in the trial testing: reinforcement size, material flow behavior and panel thickness. The effect of these key processing parameters on the mechanical properties are discussed along with guidelines for testing and characterization.