Optimum-path forest (OPF) is one of the efficient graph-based frameworks that can determine the patterns of input dataset by extracting the optimal partitions of graph obtained through encoding data into a graph. Since OPF was introduced based on simple assumptions without considering the requirements of large-scale problems, this machine learning is an effective algorithm only for a reasonable size of input datasets. To provide a scalable OPF, this study introduces a strong coreset for accelerating OPF algorithm. Applying this approach can expedite OPF procedure, especially when it is working on massive datasets. Accordingly, a novel algebra is developed to represent the problem of OPF as an optimization problem for the proposed coreset definition. A novel coreset construction algorithm that can approximate the OPF solutions is subsequently proposed in order to improve the OPF construction speed. The simulation results of diverse experiments on various benchmark datasets illustrate computation gain and superiority of the proposed algorithm in terms of the construction and classification speeds as compared to the original algorithm while displaying reliably accurate performance. The presented coreset construction algorithm performs the training and testing phases of OPF up to 6.1 and 4.9 times faster than before, respectively.